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Abstract—Objective: Optical Coherence Tomography
(OCT) images can provide non-invasive visualization of fun-
dus lesions; however, scanners from different OCT manu-
facturers largely vary from each other, which often leads to
model deterioration to unseen OCT scanners due to domain
shift. Methods: To produce the T-styles of the potential
target domain, an Orthogonal Style Space Reparameter-
ization (OSSR) method is proposed to apply orthogonal
constraints in the latent orthogonal style space to the sam-
pled marginal styles. To leverage the high-level features of
multi-source domains and potential T-styles in the graph
semantic space, a Graph Adversarial Network (GAN) is con-
structed to align the generated samples with the source
domain samples. To align features with the same label
based on the semantic feature in the graph semantic space,
Graph Semantic Alignment (GSA) is performed to focus
on the shape and the morphological differences between
the lesions and their surrounding regions. Results: Com-
prehensive experiments have been performed on two OCT
image datasets. Compared to state-of-the-art methods, the
proposed method can achieve better segmentation. Con-
clusion: The proposed fundus lesion segmentation method
can be trained with labeled OCT images from multiple man-
ufacturers’ scanners and be tested on an unseen manufac-
turer’s scanner with better domain generalization. Signifi-
cance: The proposed method can be used in routine clinical
occasions when an unseen manufacturer’s OCT image is
available for a patient.

Index Terms—OCT image segmentation, domain gener-
alization, orthogonal style space, graph semantic space.
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I. INTRODUCTION

OCT [1] has emerged as a powerful imaging modality
for non-invasive visualization of retinal structures. It can

provide high-resolution cross-sectional images of the retina for
early detection and diagnosis of various ocular diseases. Due to
the development of medical image segmentation [2], [3], [4],
the segmentation of fundus lesions such as intraretinal cysts and
subretinal fluid [5], [6] has been highly improved, as it plays a
crucial role in quantitative assessment of ocular diseases.

Deep learning-based segmentation methods[7], [8] have
achieved remarkable success by leveraging large-scale anno-
tated datasets. However, the performance of these models often
deteriorates when applied to unseen medical domains due to
domain shift [9], [10] such as appearance and characteristics,
physiological differences, temporal shift and acquisition proto-
cols. Scanners vary across different hospitals or imaging centers
from different manufacturers (shown in Fig. 1). Large domain
shift hampers the generalization of segmentation models in
real-world clinical practice.

To improve generalization, significant research efforts have
been devoted to Unsupervised Domain Adaptation (UDA) and
Domain Generalization (DG). UDA aims to mitigate the decline
in generalization caused by distribution variations between la-
beled source domain data and unlabeled target domain data.
UDA has been widely studied in the literature [11], [12], [13],
and they employed adversarial learning to align the distributions
between the source and target domains. Synthetic target domain
images were generated to train a segmentation model and further
mitigate the domain shift [14], [15]. Some reseachers [16], [17]
proposed a feature-disentanglement style-transfer module to
synthesize the target-like source images to mitigate domain shift.
Though UDA methods have shown promising performance,
their clinical applicability is limited due to the necessity of
accessing to target domain data.

To overcome the limitation of UDA, researchers have in-
troduced DG methods that solely rely on the source domain
data. Some DG methods used randomization-based strate-
gies [18], [19] to generate augmented input data by apply-
ing random transformations to the image-space, frequency-
space, or feature space. Adversarial-based techniques [20],
[21] have also been developed to maximize data diversity
while simultaneously constrain its reliability. Additionally,
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Fig. 1. Examples of OCT images from the RETOUCH dataset, cap-
tured by three different manufacturers’ scanners (domains). (a) Cirrus;
(b) Spectralis; (c) Topcon. The images exhibit significant variations, i.e.,
domain shift.

normalization-based methods [22], [23], commonly employed
for specific tasks like pathological images, have shown ef-
fectiveness in improving generalization. Besides, at feature
denoteation level, some well-generalized methods focused on
invariant feature representation [24], [25], [26] and feature dis-
entanglement [27], [28], [29], [30] to decompose the features
of input samples into domain-invariant and domain-specific
components. The objective of robust generalization models was
to concentrate exclusively on the domain-invariant feature com-
ponents while disregarde the domain-specific ones. Learning
strategies have garnered considerable attention in addressing
DG issues across diverse domains. These strategies could be
broadly categorized into ensemble learning [31], [32], meta-
learning [33], [34], [35], and self-supervised learning [36],
which utilized generic learning paradigms to enhance the gen-
eralization performance.

In this paper, we propose a novel domain generalization
method that combines style augmentation and semantic align-
ment based on dual-space constraints named OSSR and Graph
Semantic Space Alignment (GSSA), respectively. OSSR takes
into account that the target domain styles mostly exist in the
marginal distribution of the source domain data. A marginal
style sampling strategy is introduced and the marginal style is
subsequently mapped to an orthogonal style space for reparame-
terization. This maximizes the difference between the generated
pseudo-target domain style and the source domain style to
recognize style-invariant features and overcome the limitation
of traditional style transfer methods that mainly rely on the
typical styles of source domain. Furthermore, we leverage the
generated T-styles samples which have different styles but the
same semantic content with source domain in GSSA. GSSA
maps and aligns the labels and features to the latent graph
semantic space to encourage the segmentation network to focus
on shape of lesions. In addition, adversarial learning of graph
convolutional networks is proposed to capture the underlying
relationships among various lesions. The main contributions of
our work are summarized as follows,

� An OSSR data augmentation method is proposed to apply
orthogonal constraints in latent orthogonal style space to
the sampled marginal styles for producing closely approx-
imate the style of the potential target domain, such that
domain generalization of the network can be improved in
unseen target domains.

� A GAN is constructed to align the generated samples with
the source domain samples in a graph semantic space for
leveraging the high-level features of multi-source domains
and potential T-styles samples in graph semantic space.

� GSA is performed to align features with the same label
based on the semantic feature in the graph semantic space.
A Feature Mapping Module (FMM) is constructed to map
the features of the samples to the graph semantic space,
and a Label Mapping Module (LMM) is also constructed
to map the labels to the same graph semantic space. This
allows us to effectively constrain the backbone to focus on
the shape and the morphological differences between the
lesions and their surrounding regions.

� Comprehensive experimental results have demonstrated
the superiority of our method over state-of-the-art domain
generalization techniques on two OCT image segmenta-
tion tasks.

II. RELATED WORK

A. Domain Generalization for Medical Image Analysis

Unlike the domain adaptation task [12], [15], [17] which
needs the images of the target domain, the domain generalization
task [19], [23], [26] requires good generalization on the unseen
target domain. The domain generalized segmentation methods
aim to learn a model from a single or multiple source domains
for unseen target domains. Existing DG methods can be roughly
categorized into strategy-based methods, feature-based methods
and data-based methods.

A typical strategy-based method is meta-learning [37]. Khan-
delwal et al. [33] employed few-shot learning to adapt the
generalized model with very few examples from the unseen
domain to new unseen data distribution. Kim et al. [38] presented
a memory-guided domain generalization method that learned
how to memorize a domain-agnostic and distinct information
of classes. Wang et al. [35] designed a meta-sampling strategy
to simulate the source/target domain shift and then developed a
style-invariant model for image segmentation.

Feature-based methods usually deal with domain generaliza-
tion by learning domain-invariant features [24], [27], [39]. Lai
et al. [26] learned image features with knowledge originating
from multi-source domains and handled the intra-domain vari-
ation by individually modeling the pixel and region relations
within an image. Hu et al. [40] used the domain-discriminative
feature embedded in the encoder to generate the domain code
of each input image, which established the relationship between
multiple source domains and the unseen target domain. How-
ever, it was challenging to distinguish domain-invariant features
from domain-specific data.

Data-based generalized methods were usually based on dif-
ferent data augmentation strategies. Fick et al. [20] used Cycle-
GAN [41] to enrich the training samples by transforming images
to another style. Su et al. [19] sampled from a linear combination
of random variables, which are location-scale distribution at
the class level, to generate fused images for data augmenta-
tion. Some other linear-dependency generalized methods [28],
[42], [43] were proposed in the feature space. However, the
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Fig. 2. Overview of our proposed method. The OSSR path serves as our auxiliary branch for enhancing marginal orthogonal style transfer in our
framework, then the generated samples f̃a is used to perform graph semantic space alignment in the GSSA path with source domain samples.

effectiveness of these strategies depended on the ability to fit the
distribution of the target domain. If the style of the target domain
differed significantly from the source domain, it was difficult to
achieve satisfactory results with random combinations.

B. Semantic Content Consistency

Semantic content consistency is a crucial aspect of domain
generalization in medical image segmentation to ensure the
semantic consistency of images across different domains. For
instance, some data augmentation methods [21], [28] aimed to
enhance the diversity of data and improve the model’s gen-
eralization and semantic content consistency across different
data domains. These methods utilized various data augmentation
techniques such as rotation, scaling, mirroring, elastic deforma-
tion, etc., to transform training data and generate more domain
variations, and to help the model learn more robust feature
representations.

Some methods aimed to achieve semantic content consistency
by aligning semantic features across different data domains.
Rahman et al. [44] employed adversarial training frameworks
using generative adversarial networks [45] to minimize the
discrepancy between the generated images and synthetic im-
ages [30], [46], [47], which rely on external images to incor-
porate more diverse styles, and leverage content consistency
across them. Wang et al. [48] designed a content consistency
loss for balancing the adversarial relationship between the en-
coder and the auxiliary predictor to make the content features

more style irrelevant. Kundu et al. [49] mitigated the inherent
shift across domains through adversarial learning and explicitly
imposed content consistency on the adapted target denoteation.
To the best of our knowledge, all of these methods are based on
convolutional neural networks.

III. METHOD

A. Problem Definition and Method Overview

For multiple-source domain generalized OCT image segmen-
tation, K datasets are collected from different manufacturers’
OCT scanners. The multiple-source domain dataset Ds consists
ofK − 1 datasets, defined asDs = {(xk

i , y
k
i )

Nk
i=1}K−1

k=1 , where
xk
i denotes the i-th image from thek-th source domain and yki de-

notes the corresponding label. The target domain Dt = {xi}NK
i=1

is theK-th domain and is not visible during the training process.
The proposed dual-spatial constraints domain generalization

model is shown in Fig. 2. In our OSSR module, a style augmen-
tation strategy is presented based on a simple encoder-decoder
structure in our Marginal Style Sampling (MSS) module at
the first convolutional layer to enhance the encoding process
by obtaining more discriminative styles across different source
domains. In order to generate T-styles samples that may be
close to the potential target domain, an orthogonal constraint is
imposed to the diversified style features in a latent style space.
The T-styles samples which incorporate the maximum difference
in style from the source domains are fed into the segmentation
network to augment the training samples. These T-styles samples
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encourage the backbone to reach a low inter-domain shift and im-
prove the model’s generalization in capturing domain-invariant
features.

In the GSSA module, we combine graph adversarial learning
and graph semantic alignment so that the changed style samples
and the original source samples are supposed to share the same
semantic content. To be specific, FMM is proposed to map the
features extracted by the backbone to the graph semantic space
and LMM is proposed to map the labels to the graph semantic
space. Semantic features are then transformed into graph nodes
by aggregating the information of the graph nodes through a
graph network to sharpen the differences between samples with
various styles by training a graph discriminator with a graph
adversarial loss and to enhance the feature extraction capability
of the encoder. In the following sections, we will elaborate the
dual-space constraints for fundus lesion segmentation of unseen
manufacturer’s OCT images.

B. Orthogonal Style Space Reparameterization

1) Marginal Style Fusion: Previous style transfer methods
mainly focused on transforming typical styles between existing
source domains, but transferring to the style of the unseen target
domain was challenging because the styles of the multiple-
source domains largely differ from those of the unseen target
domain. A small portion of the source domain samples may
have similar styles to those of the unseen target domain, i.e.,
the style distribution of the target domain samples lies at the
margins of the style distribution of the source domain samples.
To address this issue, MSS is presented to generate new styles,
called potential T-styles, which are potentially similar to those
of the unseen target domain.

Style code fk
i,e is extracted from each source domain by

embedding the output of the convolutional layer before the
backbone. These style codes fk

i,e are then stored in a style bank
with a capacity of sizeC. During each epoch update, the sampled
marginal style code fk

i,s, which exhibits the largest difference
in the current epoch’s input samples, is identified in the style
bank as

fk
i,s = MSS(fk

i,e), (1)

where fk
i,e is saved in style bank, then cosine similarity is used

to calculate the marginal style fk
i,s, which exhibits the largest

difference between the other style codes in style bank.
After the marginal style codes fs are sampled, Marginal

Style Fusion (MSF) module is used to get the potential T-styles
samples fa which contain the style of fs but the same semantic
content of the source feature as

fa = MSF (fs, fx) = σ(fs)

(
fx − μ(fx)

σ(fx)

)
+ μ(fs), (2)

In MSF (·, ·) module, style transfer is performed by using
AdaIN [50], and fx denotes the feature map extracted by a
convolutional layer, μ and σ denote the mean and standard
deviation, respectively. This sampling strategy may produce
some styles of the target domain samples. However, merely
sampling the source samples would result in the same outcome as

traditional style transfer methods. This is because the subsequent
style transfer still relies on the styles present in the source domain
and cannot generate most styles of the target domain that do not
exist in the source domain samples.

Note that the style codes fs obtained through resampling
in the current epoch still denotes the styles presented in the
source domain. Its sampled styles are close to the marginal
distribution and lead to effective data augmentation for maxi-
mizing differences in style. This idea is similar to Mixup for
style transfer across domains, which is randomly transferring
samples between domains. However, a drawback of Mixup is
that style transfer is only performed on samples from different
source domains within the current epoch. The style obtained
by any sample in different source domains is limited by the
diversity of styles inherent in the source domains. When there is
a large difference in style between an unseen target domain and
the source domains, styles from the source domains may differ
significantly from those of an unseen target domain. To address
this issue, we sample from a Dirichlet distribution to generate
potential styles not present in the known source domains, such
that domain generalization of the network can be improved
in unseen target domains. Furthermore, we choose to assign
weights to the style codes fs from a Dirichlet distribution. The
weights [α1, . . . , αS ] are defined as W , and the number of
sampled style is defined as S. Eq. (2) can be re-expressed as

fa = MSF

(
W ·Dirichlet

(
1

S

)
· fs, fx

)
, (3)

where the operation ofMSF (·, ·) is the same as Eq. (2), and 1
S is

a concentration parameter. The Dirichlet distribution is capable
of generating diverse style codes because it is a multidimensional
distribution and each dimension represents a category. This
makes it particularly useful for generating data with multiple
discrete attributes.

2) Orthogonal Style Reparameterization: To enhance the
diversity of potential T-styles, style reparameterization is further
performed in a high-level orthogonal style space. When two
vectors are orthogonal, they contain the maximum amount of
independent information, and can result in diverse potential
T-styles. Thus, by introducing an orthogonal constraint to the
potential T-styles, we can transform the task of generating
approximate styles for unseen target domain into an orthogonal
constraint problem within the high-level orthogonal style space.
Therefore, an encoder-decoder structure is designed to impose
the orthogonal constraint on marginal style sampling.

Incorporating features with new styles is more beneficial for
extracting feature from the mapping vectors in the high-level
orthogonal style space, rather than solely relying on style codes
to be fed into the style encoderEse. Therefore, fa and fx are both
fed into theEse to obtain high-level features zki,a ∈ Za and zki,x ∈
Zx, where k represents k-th source domain, and i represents the
i-th sample. The mapped features zki,a and zki,x are imposed to
maximize the differences between style vectors of different do-
mains. Therefore, z1i,a, z

2
i,a, . . . , z

K−1
i,a , z1i,x, z

2
i,x, . . . , z

K−1
i,x are

stacked into a matrix Ẑi ∈ R(2K−2)×L, where L is the length of
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each style vector. Since the learned style codes need to preserve
the distinction, these style codes should be well-separated in the
orthogonal style space, and the distance between styles of dif-
ferent domains should be maximized. To achieve this, a margin
loss is proposed to constrain positive correlations between style
codes. Each style codes extracted from a sample in the source
domain forms a pair with the style codes extracted from another
sample in a different source domain. The orthogonal loss of Ese

can be expressed as

Lstyle =

B∑
i=1

∥∥∥∥∥
Ẑi

T
Ẑi

‖Ẑi
T ‖ · ‖Ẑi‖

− IL×L

∥∥∥∥∥
2

+

∥∥∥∥∥
ẐiẐi

T

‖Ẑi‖ · ‖Ẑi
T ‖

− I(2K−2)×(2K−2)

∥∥∥∥∥
2

, (4)

where IL×L denotes the identity matrix of size L× L. The
first term encourages orthogonality of the style codes, thereby
maximizing the inter-class distance of distinctive style codes
and the second term promotes independence of the style codes
to reduce redundant information and maximize the information
capacity of the high-level style space.

To ensure the effectiveness of style encoding, the codes pro-
duced by Ese are fed into our style decoder Dsd. Dsd discerns
the distinctive style characteristics of different domains and
reconstructs these high-level style codes into low-level style
features of the source domain samples, which are then fed back
into the input network. This ensures that Ese does not generate
randomly high-dimensional style vectors in the high-level space.
Consequently, further constraints are imposed on the preceding
style generator, and the style consistency loss is defined as

Lsc =
1

K − 1

K−1∑
k=1

(
fk
i,e −Dsd

(
zki,x

))2
, (5)

where Dsd denotes the style decoder in orthogonal latent space.
It is important to note that the gradients in Eq. (5) need to be
backpropagated to both the style encoder and the style decoder.
In contrast, the gradients from the aforementioned orthogonal
style loss in Eq. (4) are only backpropagated to the style encoder.

Our style consistency loss only operates on the styles of
the source domain features and does not consider the poten-
tial T-styles fa, because we aim to fine-tune fa through the
orthogonal constraints in the high-level orthogonal style space,
to promote diverse potential T-styles and ensure distinctiveness
among styles from different source domains. The entire style
orthogonality module serves as a style transfer-based data aug-
mentation strategy. Subsequently, the reparameterized orthog-
onally mixed style feature fr is generated by feeding Za into
the style decoder Dsd to map it back to the low-level features
as f1

i,r, f
2
i,r, f

K−1
i,r ∈ Zr. Meanwhile, the style bank with fk

i,r is
updated as a style code to enrich the variety of styles contained
in the style bank. Finally, style fusion is employed to merge the
reparameterized style feature code fr with its source domain
sample as

f̂a = MSF (fr, fa) (6)

The source feature fx and the marginal reparameterized orthog-
onally style mixed feature f̂a are jointly fed into the backbone
network, then the segmenter generates prediction map from
pairs of samples fk

i,x and f̂k
i,a with different styles but the

same semantic labels. This strategy effectively enhances the
backbone’s ability to generalize well to samples with diverse
domain shifts.

C. Graph Semantic Space Alignment

Our orthogonal space style reparameterization data augmen-
tation strategy generates samples that closely resemble the style
of the target domain. This greatly improves the semantic coding
ability of the network. However, this improvement overly relies
on the unequipped backbone’s ability to capture style differences
and lacks constraints on sample pairs with the same semantic
content. Therefore, our GSSA module is proposed to help our
backbone identify the semantic content of samples of different
styles. Taking advantage of the style combination of different
domains with the same content, our GSSA module is composed
of two parts, one is graph convolutional adversarial learning that
benefits from the powerful information aggregation capability
of graph convolutional network, which is used to align the
high-level features extracted by the backbone, and the other is
the graph semantic alignment to connect the high-level features
with the labels.

1) Graph Adversarial Network: For domain generalization
tasks, neither the backbone nor the segmenter have encountered
the target domain during training. In previous approaches, adver-
sarial learning with convolutional neural network was applied
to the whole high-level features, but it still lacked sufficient uti-
lization of different channels of the high-level features and their
relationships. The emergence of graph convolutional networks
can overcome this drawback, as they can leverage the high-level
features of multi-source domains and potential T-styles samples
for domain generalization tasks.

In our GAN, an undirected fully connected graph
Γ = (V ∈ RC·2B·(K−1)×d, E ∈ RC·2B·(K−1)×C·2B·(K−1),A ∈
RC·2B·(K−1)×C·2B·(K−1)) for all graph nodes is constructed in
a batch, where C denotes the number of each sample’s nodes,
B is the batch size, d is the size of each node and V denotes the
graph nodes, E denotes graph edges, A denotes the adjacency
matrix. Specifically, for each feature Fi,m ∈ Fm generated by
our FMM, each Fi,m is semantically mapped to a vector in the
latent graph semantic space, denoted as node vi ∈ V in Γ. The
edge ei,j ∈ E denotes a connection between nodes vi and vj .
The semantic similarity score ai,j in the adjacency matrix A
corresponds to the pair of nodes (vi, vj).

For the first layer of the GAN, each graph node vi ∈ V
is initialized with Fi,m ∈ RC×H×W extracted by FMM. Each
channel is flattened to form a node, resulting in a total ofC nodes
for a single sample input to the graph network. The semantic
similarity scores a

(l)
i,j ∈ (0, 1) are computed for all node pairs

(vi, vj) ∈ E at l-th layer as follows,

a
(l)
i,j = f

(l)
edge

(
v
(l−1)
i ,v

(l−1)
j

)
(7)
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where f
(l)
edge(·) denotes the similarity, and v

(l−1)
i denotes the

features of node vi in l − 1th layer of the GAN.
Self-connections are added to the nodes in the graph and the

obtained similarity scores are normalized as follows,

A(l) = M− 1
2

(
Â(l) + I

)
M− 1

2 (8)

where M denotes the degree matrix, I denotes the identity
matrix, and Â denotes the unnormalized adjacency matrix.

By multiplying the obtained adjacency matrix A with V , the
aggregated node features Fagg ∈ RC·2B·(K−1)×HW that inte-
grate features from all samples can be obtained by

F
(l)
i,agg =

n∑
j=1

a
(l)
ij · f (l−1)

vj
(9)

where F
(l)
i,agg denotes the aggregated feature of the i-th node vi,

which is connected to all other nodes. Therefore, it is multiplied
by the adjacency matrix coefficientsa(l)ij between the other nodes

and this node, and f
(l−1)
vj denotes the feature of vj from the

previous layer.
Finally, the graph nodes mapping from Fm with the graph

nodes from the aggregated feature Fagg to update V̂ are con-
catenated and fed into the graph convolutional discriminator.
A binary classification loss is defined to enable the graph con-
volutional discriminator to distinguish whether the input graph
nodes come from the source domain or from the potential target
domain generated by style transfer as

Lgcn = −
∑

vi,vj∈V
(log (Dgcn(cat(fvi

, Fi,agg)))

−log (1−Dgcn(cat(fvj
, Fj,agg)))) (10)

where Dgcn(·) denotes the graph convolutional discriminator,
cat(·, ·) denotes the concatenation operation, vi denotes the
graph nodes from the source domain, and vj denotes the graph
nodes mapped from samples with the potential T-styles. On the
other hand, an adversarial loss is also defined to deceive the
graph convolutional discriminator as

Ladv = −
∑
vj∈V

log (1−Dgcn(cat(fvj
, Fj,agg))) (11)

Note that this loss is used to optimize the first convolutional layer,
backbone, and FMM, not the graph convolutional discriminator.

2) Graph Semantic Alignment: To constrain the semantic
mapping and enhance the ability of GAN to capture seman-
tics of graph nodes during the process of graph adversarial
learning, GSA is performed to align features with the same
label based on the semantic feature in Fx. It can be solved by
two reversible processes, one process transforms the high-level
feature to connectivity label Y , while the other process performs
the reverse mapping from connectivity label to the high-level
feature as Fx � Y . Due to a significant difference of Y and
Fx, an intermediate graph semantic space V is constructed, and
thus the reversible process becomes Fx � V , followed by the
process V � Y , such that the feature of lesions can be utilized

through the mutual conversion of Y and the graph semantic
space V .

In GSA module, FMM is implemented as a downsampling
network, which consists of a combination of convolution and
downsampling operations to map Fx to a graph semantic vector
V1, instead of directly mapping Fx to the label, because it is
not feasible to map the label back to the features Fx extracted
by the backbone in this reversible process, and the dimensions
of Fx and the label are significantly different. While the high-
level featureFx contains rich information, the label only provide
such as shape-related features. Therefore, we aim to fully utilize
the information of the label and extract shape-related content
from the features Fx. This allows us to effectively constrain the
backbone to focus on the shape and the morphological difference
between lesions and their surrounding tissues. Consequently, it
enables accurate lesion segmentation, without being limited by
domain shift. Furthermore, LMM consists of an autoencoder.
The encoder of LMM maps to a graph semantic vector V2 and
the decoder of LMM is used to reconstruct the label from V2.
l2,1 is imposed as prior of structured sparsity in matrices to
make the semantic feature mapped by the autoencoder more
comprehensive. Therefore, a graph semantic reconstruction loss
can be defined as

Lgsr = ||Y ′
r − Yc||2 + ||V2||2,1, (12)

where Y ′
r is the reconstructed connectivity map, and Yc is the

connectivity map in which the number of channels is eight
times of segmentation categories, i.e. each category has eight
corresponding channels to denote its neighboring regions.

Simultaneously, leveraging the matrixV2 for its effectiveness,
to align the generated V1 from the FMM with V2, Jensen-
Shannon divergence (JSD) between the corresponding posterior
probabilities P and Q of matrices V1 and V2 are used as the loss
for graph semantic consistency,

Llsc = JSD (P ;R) =
1

2
(DKL[P ||Q] +DKL[R||Q]) (13)

whereQ = (P +R)/2 denotes the average probability between
the original samples and the stylized samples. DKL denotes
Kullback-Leibler divergence between the posterior probabili-
ties P,R and Q. JSD constrains the invariant semantic feature
between the two graph semantic spaces.

Dice loss and cross-entropy loss are used to train the frame-
work,

Lseg = Lmse(Y
′
c , Yc) + Lce(P̃ , Y ) + Ldice(P̃ , Y ), (14)

where Lmse, Lce and Ldice are the mean squared error loss,
the cross-entropy loss and the dice loss, respectively. Y ′

c is the
predicted connectivity map. P̃ is the predicted segmented result.
Y is the segmentation label. In line with [51], the bilateral voting
module and the region-guided channel aggregation module are
used to get the segmentation prediction,

P̃ (x, y) = max{Y ′
c,i(x, y)× Y ′

c,7−i(x+ a, y + b)}7i=0, (15)

where i is the i-th channel of the Bicon map, a, b ∈ {0,±1}
denote the location offsets of neighboring pixels.

Authorized licensed use limited to: Soochow University. Downloaded on January 06,2025 at 09:11:43 UTC from IEEE Xplore.  Restrictions apply. 



LIAO et al.: DUAL-SPATIAL DOMAIN GENERALIZATION FOR FUNDUS LESION SEGMENTATION IN UNSEEN MANUFACTURER’S OCT IMAGES 2795

TABLE I
DETAILS ABOUT THE TWO DATASETS

Overall, the total loss is defined as

Ltotal = Lstyle + Lsc + Lgcn + Ladv + Lgsr + Llsc + Lseg

(16)

IV. EXPERIMENTS

In this section, we tested the performance of the fundus lesion
segmentation framework by performing comprehensive experi-
ments on two benchmark datasets. Experiments and results were
reported as follows.

A. Dataset

The proposed method was evaluated on two OCT image
datasets: a publicly fundus fluid segmentation dataset RE-
TOUCH [52], and a drusen segmentation dataset from three
clinical centers. The descriptions of the datasets are shown in
Table I. The fundus image datasets were collected from different
clinical centers. The heterogeneity of fundus OCT images across
different domains was primarily due to different manufacturer
scanners.

1) Fluid Segmentation Dataset: OCT images were col-
lected from three different manufacturers’ OCT scanners, which
were regarded as three domains. This dataset consisted of 70
OCT volumes, where 24 volumes were acquired with the Cir-
rus scanner (Zeiss), 24 volumes were acquired with the Spec-
tralis scanner (Heidelberg), and 22 volumes were acquired with
the T-1000 and T-2000 scanners (Topcon). For each volume,
there were 128, 49, and 128 B-scans with size of 512× 1024,
512× 496, and 512× 650 for Cirrus, Spectralis and Topcon,
respectively. In this dataset, three different fluid types, i.e.,
the intraretinal fluid (IRF), subretinal (SRF), and PED (pig-
ment epithelial detachments), were manually annotated. All
B-scans were randomly cropped around the lesion with size of
512× 512.

2) Drusen Segmentation Dataset: OCT images were also
collected from three distinct clinical centers, in which OCT
scanners were made from three different manufacturers and
therefore regarded as three domains. Each domain consists of
100 patients, with domain 1 images acquired from Z-lab [53]
(Spectralis, Heidelberg), domain 2 images with age-related mac-
ular degeneration acquired from Vision and Image Processing
(VIP) Laboratory of Duke University [54] (Bioptigen Inc.), and
domain 3 images acquired from Joint Shantou International Eye
Center (JSIEC), Shantou University and the Chinese University
of Hong Kong (3DOCT-2000, Topcon). OCT volumes were with
128, 49, and 128 B-scans with sizes of 512× 496, 1000× 512,

and 1024× 1177 for domain 1, domain 2, and domain 3, respec-
tively. All B-scans were randomly cropped around the lesion
with size of 512× 512. Manual annotation was performed by
an experienced eye doctors.

B. Implementation Details

All models were tested on one NVIDIA GTX 3090 GPU. The
entire network was trained for 200 epochs, with a learning rate of
0.001. The Adam optimizer was used to train the segmentation
model. The batch size was determined to 1. Ese consists of
convolutional blocks, each accompanied by a down-sampling
layer to decrease the resolution and the output of Ese was
flattened to obtain a latent style code with a length of 256. Dsd

consisted of three fully connected layers with respective sizes of
256, 512, 512 and 64. In our FMM module, the number of nodes
as well as the output channel number of FMM for each sample
was set to 90, and the length of feature vector of each node was
set to 256. The autoencoder of LMM consisted of convolutional
layers, followed by ReLU activation, and downsampling in
the encoder/upsampling in the decoder. Data-augmentation was
performed based BigAug [55].

C. Experimental Results and Analysis

1) Comparative Methods and Evaluation Metrics: The
lower bound (Inter-domain) refers to training the encoder-
decoder segmentation network with all source domains and then
directly testing on the unseen target domain, while the perfor-
mance was poor due to the distribution discrepancy between
the source (train) data and target (test) data. The upper bound
(Intra-domain) means that each single domain was respectively
trained and tested using 4-fold cross-validation. The proposed
method was compared with several state-of-the-art methods.
Data manipulation-based methods include Mixup [56] and Cut-
mix [57], which operated at the image and pixel level, respec-
tively. DualNorm [18], CDDSA [28] and MixStyle [58] trans-
formed image to another style. DCAC [40] used dynamic con-
volutions to train the model. DoFE [27] and UniSeg [59] learned
domain-invariant features using prior of different domains and
the specific features by integrating the universal prompt of each
domain, respectively. DCANet [42] and TriD [60] were based
on feature decomposition and recomposition. RobustNet [61]
and SANSAW [62] aligned the distributions of the different
domains. The segmentation performance was evaluated using
the Dice similarity coefficient (Dice).

2) Experiments on Fluid Segmentation: Table II presents
the evaluation results in terms of Dice scores for IRF, SRF, PED
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TABLE II
QUANTITATIVE COMPARISON OF DIFFERENT METHODS IN FLUID

SEGMENTATION DATASET

segmentation. The upper bound achieved the highest perfor-
mance, with an average Dice score of 62.21 across the three
domains. In contrast, the lower bound only achieved an average
Dice score of 19.71 due to the large domain shift. Compared
to previous methods, our approach achieved a performance im-
provement of 1.25 over RobustNet, indicating that it effectively
improved performance in both data augmentation strategies and
semantic alignment strategies. Fig. 3 shows a visual comparison
of our proposed method with 12 previous methods on three target
domains. The results demonstrated that our proposed method
achieved superior segmented results with better boundaries to
ground truth. In contrast, the previous DG methods exhibited
a higher occurrence of over-segmented and under-segmented
regions. p < 0.001 of paired t-test showed that the superiority
of our method for fluid segmentation was statistically significant.

3) Experiments on Drusen Segmentation: Table III re-
ports the segmentation performance on the drusen segmentation
dataset. The upper bound demonstrated the highest performance
and achieved an average Dice score of 78.39 across the three
domains, and the lower bound only reached an average Dice
score of 67.18. The performance decline was more than 10 in
terms of average Dice score, indicating a significant domain
shift among the different domains. Among the previous methods,
some DG methods achieved great improvements compared with
the lower bound, and data augmentation strategies, such as
CutMix and Mixup, yielded improvements of 1.19 and 0.87,
respectively. SANSAW surpassed all other previous methods
with a Dice score of 76.32. CDDSA and UniSeg had a similar
segmentation performance with average Dice score of 75.46 and
75.43, respectively. Compared to SANSAW, the Dice score of
our method improved by 1.01. p < 0.001 of paired t-test showed
that the superiority of our method for drusen segmentation was
statistically significant.

4) Analysis of Different Methods: Note that the perfor-
mance of each previous method varied across different target
domains due to differences in model generalization capabilities.

TABLE III
QUANTITATIVE COMPARISON OF DIFFERENT METHODS IN DRUSEN

SEGMENTATION DATASET

For example, although SANSAW achieved good results on
the drusen segmentation dataset, its performance significantly
declined on the second domain of the fluid segmentation dataset.
Due to significant intra-domain variations, DoFE resulted in
unreliable domain-invariant knowledge extraction, and it led
to poor performance on the first domain of the fluid segmen-
tation dataset. RobustNet demonstrated notable improvements
in whitening operations for multi-class tasks, but performed
less effectively on binary segmentation tasks compared to data
augmentation techniques. While traditional Mixup and Cutmix
performed admirably across different domains, they were infe-
rior to our method based on dual-spatial constraints.

D. Ablation Study

The proposed method consists of three primary compo-
nents: Orthogonal Style Space Reparameterization (OSSR),
Graph Adversarial Network (GAN), and Graph Semantic Align-
ment (GSA). Ablation experiments were performed on the
fluid segmentation dataset to evaluate each component. Base-
line was DeepLabv3+[63] with ResNet101 but without batch
normalization.

1) Analysis of OSSR: Compared to the lower bound, the
baseline achieved a noticeable improvement in the network’s
generalization and the average Dice score improved by 37.63.
As shown in the 4th row in Table IV, all the Dice scores of
the three domains were improved and the average Dice score
improved from 57.34 to 58.84. This indicates that OSSR applied
in different source domains yielded potential T-styles samples
for domain generalization.

2) Analysis of GAN and GSA: Building upon the gen-
eration of new samples using OSSR, we conducted ablation
experiments on GAN and GSA. The 5th and 6th rows in Table IV
denote the quantitative results using graph adversarial network
and graph semantic alignment, respectively. On the basis of
OSSR, the average Dice scores for GAN and GSA improved
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Fig. 3. Visual comparison in three domains between different DG methods for fluid segmentation. The solid line denotes ground truth, and the
dash line denotes the prediction. The yellow arrow points to under-segmentation. The purple arrow points to over-segmentation. (a) Original image;
(b) DCAC; (c) DoFE; (d) TriD; (e) UniSeg; (f) DCANet; (g) CDDSA; (h) DualNorm; (i) SANSAW; (j) MixStyle; (k) Mixup; (l) Cutmix; (m) RobustNet;
(n) ours.

TABLE IV
ABLATION EXPERIMENTS OF THE FLUID DATASET

from 58.84 to 59.66 and 60.27, respectively, across the three
target domains. The results indicated that through the auxiliary
training of the two modules, the network was able to capture
the semantic information of low-dimensional features that had
different styles but the same semantics and also extracted the

domain-invariant features. In addition, the fusion of GAN and
GSA in the graph semantic space also improved the Dice score
of each domain and the average Dice score reached 60.27.

V. CONCLUSION

To achieve generalization to unseen domains, a dual-spatial
constrained segmentation network is proposed for fundus lesion
segmentation. OSSR generates source domain samples with
potential T-styles in the orthogonal style space to simulate the po-
tential target domain styles, to mitigate domain shift. GAN and
GSA can capture intra-domain semantic features and leverage
cross-domain intrinsic relationships within the label. This guides
the prediction process and improves segmentation performance.
Our method has achieved better results on two benchmark
datasets for fundus OCT image segmentation. In future work,
we plan to collect more OCT images from more manufacturers’
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scanners and focus on multi-domain generalization of funda-
mental models to benefit our OCT image segmentation task,
such that a universal OCT image segmentation model can be
applied to a wider range of OCT image segmentation scenarios.
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